Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neural Eng ; 21(2)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38513287

RESUMO

Objective.There is a high variability in the physiological effects of transcranial magnetic brain stimulation, resulting in limited generalizability of measurements. The cause of the variability is assumed to be primarily based on differences in brain function and structure of the stimulated individuals, while the variability of the physical properties of the magnetic stimulus has so far been largely neglected. Thus, this study is dedicated to the systematic investigation of variability in the pulse width of different TMS pulse sources at different stimulation intensities.Approach.The pulse widths of seven MagVenture® pulse sources were measured at the output of 10%-100% stimulation intensity in 10% increments via Near Field Probe and oscilloscope. The same C-B60 coil was used to deliver biphasic pulses. Pulse widths were compared between pulse sources and stimulation intensities.Main results.The mean sample pulse width was 288.11 ± 0.37µs, which deviates from the value of 280µs specified by the manufacturer. The pulse sources and stimulation intensities differ in their average pulse width (p's< .001). However, the coefficient of variation within the groups (pulse source; stimulation intensity) were moderately low (CV = 0.13%-0.67%).Significance.The technical parameter of pulse width shows deviations from the proposed manufacturer value. According to our data, within a pulse source of the same manufacturer, the pulse width variability is minimal, but varies between pulse sources of the same and other pulse source models. Whether the observed variability in pulse width has potential physiological relevance was tested in a pilot experiment on a single healthy subject, showing no significant difference in motor evoked potential amplitude and significant difference in latencies. Future research should systematically investigate the physiological effects of different pulse lengths. Furthermore, potential hardware ageing effects and pulse amplitude should be investigated.


Assuntos
Encéfalo , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Potencial Evocado Motor/fisiologia , Frequência Cardíaca
2.
Front Hum Neurosci ; 17: 1237712, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719769

RESUMO

Aims: Motor evoked potentials (MEP) elicited by transcranial magnetic stimulation (TMS) over the primary motor cortex are used as a neurophysiological marker of cortical excitability in clinical and scientific practice. Though, the reliability of this outcome parameter has not been clarified. Using a systematic approach, this work reviews and critically appraises studies on the reliability of MEP outcome parameters derived from hand muscles of healthy subjects and gives a proposal for most reliable TMS practice. Methods: A systematic literature research was performed in PubMed, according to the PRISMA guidelines. Articles published up to March 2023 that were written in English, conducted repeated measurements from hand muscles of healthy subjects and reliability analysis were included. The risk of publication bias was determined. Two authors conducted the literature search and rated the articles in terms of eligibility and methodological criteria with standardized instruments. Frequencies of the checklist criteria were calculated and inter-rater reliability of the rating procedure was determined. Reliability and stimulation parameters were extracted and summarized in a structured way to conclude best-practice recommendation for reliable measurements. Results: A total of 28 articles were included in the systematic review. Critical appraisal of the studies revealed methodological heterogeneity and partly contradictory results regarding the reliability of outcome parameters. Inter-rater reliability of the rating procedure was almost perfect nor was there indication of publication bias. Identified studies were grouped based on the parameter investigated: number of applied stimuli, stimulation intensity, reliability of input-output curve parameters, target muscle or hemisphere, inter-trial interval, coil type or navigation and waveform. Conclusion: The methodology of studies on TMS is still subject to heterogeneity, which could contribute to the partly contradictory results. According to the current knowledge, reliability of the outcome parameters can be increased by adjusting the experimental setup. Reliability of single pulse MEP measurement could be optimized by using (1) at least five stimuli per session, (2) a minimum of 110% resting motor threshold as stimulation intensity, (3) a minimum of 4 s inter-trial interval and increasing the interval up to 20 s, (4) a figure-of-eight coil and (5) a monophasic waveform. MEPs can be reliably operationalized.

3.
Front Hum Neurosci ; 17: 1237713, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771347

RESUMO

Introduction: Repetitive transcranial magnetic stimulation (rTMS) is used to induce long-lasting changes (aftereffects) in cortical excitability, which are often measured via single-pulse TMS (spTMS) over the motor cortex eliciting motor-evoked potentials (MEPs). rTMS includes various protocols, such as theta-burst stimulation (TBS), paired associative stimulation (PAS), and continuous rTMS with a fixed frequency. Nevertheless, subsequent aftereffects of rTMS are variable and seem to fail repeatability. We aimed to summarize standard rTMS procedures regarding their test-retest reliability. Hereby, we considered influencing factors such as the methodological quality of experiments and publication bias. Methods: We conducted a literature search via PubMed in March 2023. The inclusion criteria were the application of rTMS, TBS, or PAS at least twice over the motor cortex of healthy subjects with measurements of MEPs via spTMS as a dependent variable. The exclusion criteria were measurements derived from the non-stimulated hemisphere, of non-hand muscles, and by electroencephalography only. We extracted test-retest reliability measures and aftereffects from the eligible studies. With the Rosenthal fail-safe N, funnel plot, and asymmetry test, we examined the publication bias and accounted for influential factors such as the methodological quality of experiments measured with a standardized checklist. Results: A total of 15 studies that investigated test-retest reliability of rTMS protocols in a total of 291 subjects were identified. Reliability measures, i.e., Pearson's r and intraclass correlation coefficient (ICC) applicable from nine studies, were mainly in the small to moderate range with two experiments indicating good reliability of 20 Hz rTMS (r = 0.543) and iTBS (r = 0.55). The aftereffects of rTMS procedures seem to follow the heuristics of respective inhibition or facilitation, depending on the protocols' frequency, and application pattern. There was no indication of publication bias and the influence of methodological quality or other factors on the reliability of rTMS. Conclusion: The reliability of rTMS appears to be in the small to moderate range overall. Due to a limited number of studies reporting test-retest reliability values and heterogeneity of dependent measures, we could not provide generalizable results. We could not identify any protocol as superior to the others.

4.
Front Hum Neurosci ; 17: 1228859, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38164193

RESUMO

Background: Motor hotspot identification represents the first step in the determination of the motor threshold and is the basis for the specification of stimulation intensity used for various Transcranial Magnetic Stimulation (TMS) applications. The level of experimenters' experience and the methodology of motor hotspot identification differ between laboratories. The need for an optimized and time-efficient technique for motor hotspot identification is therefore substantial. Objective: With the current work, we present a framework for an optimized and time-efficient semi-automated motor hotspot search (SAMHS) technique utilizing a neuronavigated robot-assisted TMS system (TMS-cobot). Furthermore, we aim to test its practicality and accuracy by a comparison with a manual motor hotspot identification method. Method: A total of 32 participants took part in this dual-center study. At both study centers, participants underwent manual hotspot search (MHS) with an experienced TMS researcher, and the novel SAMHS procedure with a TMS-cobot (hereafter, called cobot hotspot search, CHS) in a randomized order. Resting motor threshold (RMT), and stimulus intensity to produce 1 mV (SI1mV) peak-to-peak of motor-evoked potential (MEP), as well as MEPs with 120% RMT and SI1mV were recorded as outcome measures for comparison. Results: Compared to the MHS method, the CHS produced lower RMT, lower SI1mV and a trend-wise higher peak-to-peak MEP amplitude in stimulations with SI1mV. The duration of the CHS procedure was longer than that of the MHS (15.60 vs. 2.43 min on average). However, accuracy of the hotspot was higher for the CHS compared to the MHS. Conclusions: The SAMHS procedure introduces an optimized motor hotspot determination system that is easy to use, and strikes a fairly good balance between accuracy and speed. This new procedure can thus be deplored by experienced as well as beginner-level TMS researchers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...